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Abstract. The hyperoctahedral group acting]&ﬁ is the Weyl group of type&8 and is associated

with a two-parameter family of differential-difference operafdrs: 1 < i < N}. These operators

are analogous to partial derivative operators. This paper finds all the ponndmiaIRN which

are harmonicAgh = 0 and annihilated by; for i > 2, where the Laplaciang = Z,N:l Tiz.

They are given explicitly in terms of a novel basis of polynomials, defined by generating functions.
The harmonic polynomials can be used to find wavefunctions for the quantum many-body spin
Calogero model.

1. Introduction

For each finite reflection group there are families of invariant inner products on the space of
polynomials, defined by an algebraic expression, and by integration with respect to invariant
weight functions on the sphere or on all of Euclidean space. These inner products essentially
coincide on the polynomials harmonic with respect to the associated Laplacian. In this paper
we study certain specific explicit harmonic polynomials associated with the hyperoctahedral
group onRY. For the reflection groups dR? all the harmonic polynomials are known as
expressions in Jacobi polynomials. Also, orthogonal bases whose elements are of generalized
Hermite (or Laguerre) type, for the Gaussian weight function have been determined by means
of a construction using nonsymmetric Jack polynomials. However, an orthogonal basis for
the weight functions on the sphere (and the ball or the simplex) has not yet been explicitly
found. Here we consider the analogue of ordinary harmonic polynomials in two variables,
but harmonic for thev-variable Laplaciam; that is, polynomials annihilated by, for
i > 2, where{T; : 1 < i < N} is the set of differential-difference operators of typeand
Ap = Zf\'zl T2. In previous work the author introduced a family of polynomials (the *
basis’) for which it is easy to write down polynomials annihilated by any desired subset of
{T; : 1 <i < N}. Inthis study it is important to select a set of polynomials for which the
harmonic polynomials have ‘nice’ coefficients. For example, coefficients of hypergeometric
type (Pochhammer symbols) are ‘nice’. We introduce a set of polynomials which are in
the @-span of thep basis (coefficients independent of the parameters) and which allow nice
expressions. The definition is given by means of generating functions.

For the harmonic polynomials we will find the values at a special pointl, ..., 1),
the leading coefficients and tHe norms; the first two are in closed form usipg;, andzF»
summations, respectively, the last is a balangBgisum. Finally, there is a discussion of
the important applications of the polynomials, especially as wavefunctions for spin Calogero
quantum many-body models.

0305-4470/99/468095+16$30.00 © 1999 IOP Publishing Ltd 8095
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2. Overview of the results

The finite group of orthogonal transformations which is generated by sign changes and
permutation of coordinates dR" is called the Weyl group of typ®, and will be denoted
by Wx. There is a family of measures associated with in a natural way: for positive
parameters, k; let

di (x: k. ky) ﬁ| | l—[ x2 — 2% ( IXIz)d 21

X; K, = Xi x-— x5 expl —— X. .
g ' i=1 1<i<j<N l ! P 2

Analysis for functions related to these measures depends on the differential-difference
operators constructed by the author [2]. Note that the polynomial termg icodrespond
to linear functions vanishing on the reflecting hyperplanes of the Coxeter giqupThe
reflections inWy consist oflo; : 1 <i < N} and{o;;, 7;; : 1 <i < j < N} defined by

i

X0, = (X1, ..., —Xi, ..., XN)
i J
x0;j = (X1, ..o, Xj, ooy Xiy ooy XN)
i J
XTjj :(xl,...,—xj,...,—xi,...,xN).
For notational convenience;; = o;; andt; = t;;. We use the same symbols to

indicate the action on functions, for examplg,f (x) := f(xo;;). The differential-difference
(‘Dunkl’) operators of typeB (associated withvy) are
Tom e 1% {1—_0+1—_f}
8)6,' Xi i Xi — Xj X,""Xj

1<i<N.

They are homogeneous of degred on polynomials and commutd;7; = T;7;. The
Laplacian operator ig := Y | T2.

In this paper we will determine all polynomialson RY which satisfyAzh = 0 and
T;h = Oforalli > 2. In the standard cask,= 0 = k;, this implies that: depends only on
x1, x2; this explains the name ‘planar’.

Definition 1. The set of polynomialgp, ;, ¥, ; :0< j <n=0,1,2,...}is defined by

DO i)l = Fo+ Fy

n=0 j=0
00 n

DY ()8 = xa(Fo+sF1) —x1Fy

n=0 j=0

in terms of the generating functions € R", and absolute convergence holds fgr< % and
1] < min(l/x?:1<i < N)/3):

_ 2 4 +2) 412,242 N
Fors s, ) = 1 2st(xl i x5) +t xlfz . 1—[(1 2512+ 12
(1 —2s1x5 +12x) (1 — 2s1x5 +12x5) 17
1(xf = x5) = 2. .2 4k
Fi(x;s,t) = 1— 2stxf +1t%x; .
1( ) (1 — 2stx2 +12x ) (1 — 2stx3 + 12x3) 1‘11( ! )

In each case, the first and second terms on the right-hand side produce the basis functions
withn + j =0 mod 2 and: + j = 1 mod 2, respectively. The polynomials ; andy, ; are
of degrees 2 and 21 + 1 in x, respectively, for 0< j < n. Because of the invariance ofg
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under the subgrou@/, acting on the first two variables, there is a basis of planar harmonic
polynomials in which all the monomials have the same parities of the exponentswof of
course they are even in each of the remaining variables.

2.1. The harmonic polynomials

The basis elements are labellegy and’, 1, wherex]xj is the term ink with the highest
power ofx; ande = 0 or 1. The formulae depend on the mod 4 residues:
L @IN =Dk tkit G +2n);(3);

hin o =
o ;O((N—1)k+k1+%+n)j(Nk+n+1)j

"\ 2N =Dk +ki+ 3 +20),(3);

han+20 =
4n+2,0 ]Z:; (N — 1)k+k1+g+n)j(Nk+n+2)j

bon.2j

P2n+1,2)

" (2N = Dk +ki+3+2n);(3);

han = X1X n,2j
4+l 12};((N—l)k+k1+§+n),-(Nk+n+1)j¢2 2j
n (2N — Dk +ky+ 3 +20);(3);
hay, = X1X . i
T 2; (N =Dk + kot S 4m),(Nk+n+2), 2"
The following are of mixed parity:
"N = Dktki+3+2n);(3),
hanv10=Y s 2, 9
‘(N =Dk+ki+35+n)j(Nk+n+1),;
i: QN - Dkthi+3+2;4G)
S (N = Dk+ky+ 3+m),a(Nk+n+1), 27
and
L 2N =Dk +ki+ 3+ 20);(3);
h n = ;
4n+3,0 ]X::O (N _Dk+h+ % ), (Nk+n+2), You+1.2;
n+l 5 1
Q2N =Dk +ky+35+2n);_1(5);
+ Z T Y121
j=1 ((N - 1)k+kl+ 2 +Yl)j(Nk+n+2)j,1
There are two other basis elements, definedhgs = o12ha+10 aNd hapi1 =
o12haps30.  Furthermore,oiohs,0 = hano, 012ha4+11 = haper1, @Nd 012hs5420 =
—han+2.0, 012han431 = —hay+31 from the obvious symmetry properties of the generating
functions.
2.2. Action ofT;

SinceA p commutes with each; the action off; or 7, on any of the polynomialg, . produces
a polynomial annihilated by z andT;, i > 2, that is, a scalar multiple of another polynomial
of this family. Specifically, the results are (fer=0, 1, 2, .. .):

Thhano = 2((N — Dk +n)han-10

Tihanao = —2((N — 2)k + ki +n + $han20

Tihap+20 = 2(Nk +n+ Dhguea0

Tihans10 = 2((N — Dk + k1 +n+ 3)hano
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Tohap+30 = 2(Nk +n + Dhgye11

Tohans11 = 2((N — 2k + k1 +n+ 3)haps10
Tohan+10 = 2((N — Dk +n)hgy-11

Tohana1 = —2(N — Dk +ky +n + hayszo0.

These formulae (together with the claifh, ., = 0 fori > 2) already imply that
Agh, . = 0 becausd2hs, o = cha,—20 for some constant and 7.2k, 0 = 012T2012han 0 =
012T12h4,,’o = —cha,_2,0. All the other polynomial#,, . can be obtained by applyiriy or 7>
often enough to somky, o with 4n > m. In subsequent sections we will derive the values of
||h,1,g||§, hoe(L,1, ..., D, h,.(1,0,...,0) and the coefficients of the leading terms. All but
the L2 norms are products of linear factors in the parameters, while the norms are expressed
as sums of balanced; series.

3. Symbolic calculus

The results described above depend on the basis of polynomials introduced in [5] for type
A, [6] for type B. The idea s to replace the variables in the typbasis byc?, x3, ..., x% and
then use the expressions ffirin terms of corresponding typé-operators. Throughout let
y =12 yn) = (2, x2, ..., x2) for x € RY. The typeA Dunkl operator is defined
by
PR o S U))

1<i<N
8yl i yl_y]

where (ij) denotes the transposition of and y;, the effect ofo;; or r;; on the squared
variables. The polynomials in € R are spanned by polynomials of the fowfg (y) where

€1 .62

e = (€1, &2, ..., ey) andx® = x;*x5* ... with eachs; = 0 or 1.

Proposition 1. Let f(x) = x®g(y) with eache; =0orl. Fori =1,2,..., N,
Tf(x)=2xx"Tig(y)  if &=0

&€ l N .
T; f(x) = 2—); ((kl - §>g+Ti(yig) —k E (G)g e;=1j# i)}) if & =1
i j

This is proposition 2.1 in [6]. The basis for the symmetric group action is constructed
as follows: for 1< i < N the polynomialsp, (y;; y) are given by the generating function
00 N
S oGyt =A—ry) A=y
n=0 j=1

J

then fora = (o, ..., ay) € ZY the collection of compositions, the basis elemppt=
]_[f\’=1 Pa; (¥i3 ¥). The key property is thaijp,, (yi; y) = 0for j #i. It was shown in [5] that

T, po = (Nk+ ) po,-1(is ) [ | Py Gm3 )

m##i
a;—1
Y { > Para,-1-mGis ) Pm (355 ¥)
j#i L m=0
— (312 ) Para,—1-m Vi3 ) [ ] P, Gt y)} (3.1)

n#i,j
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if ; >0, andf}pa = 0if ¢; = 0. On the right-hand side of this formula the same term may
appear twice, but this has no relevance for the intended use. We will setup a linearisomorphism
between the span of thebasis and polynomials in the formal variabjes po, ..., py Which

is not generally multiplicative but does allow a simple formulafar

Definition 2. The linear isomorphism¥ between the span of thebasis and the spacg of

polynomials in the formal variablegs, po, ..., py is given by : p, —> pi*p5%...p%Y"
(and extended by linearity). Further, the linear transformatignsand»; on P are defined

ay o aita;

by ¢i;pi'py’ ... PN = p; ]_[m#j per fori # j, andy; is evaluation atp; = O, for
1<i < N. (Thatis,; ; replacesp; by p;, andn; replacesp; by 0.)

Itis clgar thatd commutes with theSy action. We use the simplified notatidhfor the
operatory 7, onP.

Proposition 2. For 1 < i < N, the operator; acts on polynomials if® by

+Nkl_77i +kz§i,j+§ i—l—(l,J)'

F_ 0 j
:
ap; Di Jor Pi — Dj

Proof. It suffices to examine the effect of the formula on monomiasps? ... p}’ and
fori = 1. The first two terms producg; + Nk) if @y > 0, or otherwise 0. In the sum, the
(typical) term forj = 2is (p;*™? + p3*™* — p{* p3? — py? pa*) [To_s P&/ (P1— p2). Asimple
calculation shows this is the image undeiof the corresponding term in equation (3.1)]

We will use generating functions to determine the effectf,@&nd 7, on the polynomials
definedinthe previous sections (now we are considering theBymeerators). Forthis purpose
we consider the cased p), x1 f (p), x1x2f (p) wheref (p) is a formal series ip = (p1, p2)
(the validity of term-by-term action comes from the same argument used to justify term-by-
term differentiation of a power series inside its disc of convergence). In the following, we use
the notation

812f(p1, p2) = (f(p1, p1) + f(p2, p2) — f(p1, p2) — f(p2, p1)/(p1— P2).

Proposition 3. For a power seriesf (p1, p2) (absolutely convergent in the regiétps, p2) :
Ip1l < 1, |p2| < 1) the following hold:

(1) Taf (p) = 2x1 (UL + Nk LS QL2 + k51, f (p)),

(2) Ta(xa f(p)) = 2(((N = Dk +ki + 3) f(p) + pl% +kd12(prf (P))),

(3) To(x1x2f(p)) = 21((N — Dk +ka+3) £ (p) + p2LL — k81 2(paf (p)) — kf (P2, p1),

ap2
(4) To(x1f (p)) = 2vrxp (U2 + NRLEL2 L0 — s, 5 f(p)).

Proof. Formulae (1) and (4) follow immediately from proposition 1. Itwas showninlemma 2.3
of [6] thatT;y; = T;p; — k, wherep; is the conjugate unde¥ of multiplication by p; acting
onP. Together with proposition 2 this proves formulae (2) and (3). O

By the fundamental properties of tiebasis,T; (x;'x52 ) (p1, p2) = O foralli > 2, and
€1, &2 = 0 or 1. This applies to all the polynomials used in what follows. The images under
of the generating functiongy, F; defined in section 2 are in fact simple rational functions in
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p = (p1, p2). Indeed, for indeterminates, u», from the definition of thep basis it follows
that

N
v ((1 —u1yD) ML= upy) [ [H@ = way) (1 - szi)}k>

i=1

o0
= ‘I’< > P(m,m”'fug)

m,n=0

oo

Z P Ul = (1 — uyp1) 1A — uapa) 7. (3.2)
m,n=0

The desired expressions result from changing variablas te ¢z, u, = tz~1, and also
up = tz7hup = tz ands = 3(z + z71); then the two terms are combined by addition
and subtraction (symmetric and skew-symmetric under (1), (2), respectively). To ensure
convergence some region must be chosen, forexarrmple,g andjz] < 1/(3max(|pil, |p2]))
(ands, t € C). This is valid becausg — %| < 2|s| < (r + ) wherer = |z] andz € C, thus
ls] < % implies% < |z| < 3.

The method for computing the effect Bf on the polynomialg, ; andy, ; is to applyT;
to the generating functions and express the result by means of combinati%narm‘% and
multiplication bys, ¢. The two basic functions are

wy=1—ztp) T A —ztpp)
wa = (1—zYp)t (L —ztpa)
Then let

1—st(py+ p2) +t2pip2
(1 — 2stpy +12p2) (1 — 2stpy + 12 p))
t(p1— p2)
(1 — 2stpy +12p2) (1 — 25tpy +12p3)’

fo=3(w1+wp) =

fi=G—zHHwr—wy) =

The same formulae apply to the images undet.

Proposition 4. The generating functions in definition 1 satiBy, = fo andW F; = f.

Proof. Apply ¥~ to w; andw, using equation (3.2), then both—1w; and¥~*w, have the
common factof [/, (1 — u1y) (L — uzyi)) ™ = [T, (1 — 2sty; + 2y?)~*. The parts of the
calculation involving(1 — u; y1)~* and(1 — u; y») 1, i = 1 or 2 proceed just as those wiih
andws. O

3.1. Action ofT; on the generating functions

Now we can use the symbolic calculus ghand f1. Write go = fo +sf1 andgs = — f1

for the generating functions fofy, ;}. Thenw; = fo+1(z —z7H f1 = go + 2z g1 and

wy = fo— %(z —z7Y) f1 = go+zg1. First, the effect 08, , on various functions is calculated:
S12fo0 = tf1,812f1 = 0,812(p2fo) = sf1,812(p2f1) = f1,812(80) = tf1,812(81) =
0,681.2(p1go) = 0,812(p1g1) = f1. These simple relations are the reason for using this
particular set of functions.
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The differentiations can be done an andw,, separately. It is easy to verify that

Jwy ( t awl) Zzt w1
— =7t + —

ap1 2 ot 2 0z
31.U2 t t 8w2 t 8w2
— = wy + = - =—.
op1 Z 2 9t 2 9z

dwl

Further, plaw1 =1L - Lywy, pa i o = %(% + Dywy, (1 — nwi/p1 = ztwy and
(1—n1)wa/p1 = (t/z)wy. Inthe expressions fcg}% andg—f1 the following equations are used:

0 0 b
qwi+z twy = 2590+ 281 Pt IW2 o2 ) 280 o
9z 9z as
ow ow d d
(z— 2z H Mewr — 27 tw) = go (z—zH (2124222 = gJ80, %81
9z 0z ds  0s
dwy Jdwr 5. 081
- — ") =-2 +(1-— 2
( 9z 9z ) 81 ( N ) 9
_ 8w1 3w2 8g0 381
11 _ 98 4. 081
W <8z 82) as Ta Sas

These, as well as the following equations can be proven by direct verification (express
andwy in terms ofgo andgs, or fo and f1; of course = 3(1—z72)L). The formulae are
grouped by type as given in sections 3.1.1-3.1.4.

3.1.1. Casdif(y) :¢d — V.

rd s2-19 1 9
T1f0=2x1r([(zvk+1)+%5+s 8—} [(N 1)k+—+5—}g1)

2 2 2
s 0
T1f1=2x1t<|:(Nk+1)+—E 58_i| )

3.1.2. Casdr(x1x2f(¥)) @ x1X200 — Y.

1 a
TZ(X]_)szo) = (|:(N 2)k + kl + E + %E} g0
ad
[ ((N 1)k+k1+1+55>

10
as
19 to s 0
T =2a(-5—-8—|(N—Dk+k+1+5—+_—
2(x1x2.f1) 1( 579550 [( ) 1 29t 239s ]g1>

3.1.3. Casdi(x1f () : ¥ — ¢.

t o0

1
T =2 Dk +k + =+ —— +
1(x180) (|:(N )k +ky AT 85:| fo

t 9 0
+[s ((N—l)k+k1+1+55>+ 3 —s]f1>

139 1. t9
T1(x181)=2<—§£fo—|:(N 2)k+k1+§+55]f>
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3.1.4. Casdu(x1f(y)) : ¥ — x1x20.

10 td
T =200t (= fo+ | (N =Dk +1+2 2
2(x180) 1x2t( >3 Jo [( ) ZBt} fl)

tod s 0
T — 2 Nk+1)+ - — +-—
2(x181) 1X2t <[( ) 53 28S]fo

3 0 1, ad
— +—+—— |+ =(s°—1)— .
[S<Nk 2 28[) 0 )as]fl)
3.2. Action off; on basis polynomials

Perusal of these formulae reveals that terms invol¥iage almost ‘on the diagonal’, that is,
settingk = 0 does not noticeably simplify the formulae. In t{, ;, ¥, ;} basis, thet # 0

case is no more complicated thar= 0. This illustrates the advantage of these polynomials
over the ordinary basis. In each of the formulae, the result of expanding the equations in
{¢n,;} for f; and in{y, ;} for g;, (i = 0 or 1) and matching up coefficients ofi” on both
sides leads to the following (grouped by the parity:of ) results.

3.21.n+j=0mod 2

Tign,j = @Nk+n+ j)v,_1j—1+ QN — Dk +m),_1; — (G + D1 j+1

Tiyn ;= Q2N —Dk+2ky+n+j+1)(Puj +dunj-1) — (j+ D jr1

To(x1x2¢n,;) = RN —2)k+2ky +n+ Dy, j + 2N — Dk +2ky +n+j+ D, ;1
=+ D, j+1

Ton,j = x1%2((2(N = Dk +n+1D¢,_1; — (j + DPu_1,j+1).

3.22.n+j=1mod 2

T j = @Nk+n+j+ D1+ (G + D¥p-1,jn

T\nj = —(2(N =2k +2ky +n+ )¢, j — (j + Dy j+1
To(x1x2¢nj) = —(2(N — Dk +2ky+n+ j+2)¢, j — (j + Dby jna
Ton,j = x1x2(2Nk+n+ j+ D(¢p-1; — Pnj—1) + (j + Dp_1,j+1).

Notice that each expression has no more than three different polynomials on the right-hand
side. In the next section we use these to determine the harmonic polynomials.

4. Properties of the harmonic polynomials

Here we demonstrate the actionTaf 7> on the harmonic polynomials, which suffices to show
Agh, . = 0 for each such polynomial, as mentioned before. By construction the polynomials
defined in section 2.1 satis®#, . = 0 fori > 2; which is sufficient to establish the formulae

of section 2.2. In a sense the proofs depend on induction. Since the computafiois.cire
somewhat repetitive we will not give details on each formula. The calculations are direct; the
definitions ofFy, F; andh, . were formulated after computer-algebra-aided experimentation.
In addition, we determine the values(ét 1, ..., 1), (1,0, ..., 0) and theL? norms.
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4.1. The action of; onh
There are four main cases, each with two parts. Beckuakvays appears in the same way
we introduce the (abbreviation) notation:

ko = (N — Dk +ky + 3.

4.1.1. Casely : hayo — han—10. We begin with the proof off1rs, 0 = 2((N — Dk +
M)han_10, forn > 1. We writeTy Y7o ¢ipmi = Y 1o (T5¢)i¥m_1. » then
(T{¢)i = N — Dk +m)c; +ici1 for m+i=0mod 2
(Tic)i = @Nk+m+i+D(cie1+c) —iciza for m+i=1mod 2
These follow from the equations in section 3.2. Now Mo = Z_’}:Oaquz,,,zj
with a; = % Use the above equations with = 2n, then Tiha, 0 =
Y obiYan—12j + Y1y ¢jWan—1.2j-1 With b; = 2((N — Dk +n)a; and
cj=2(Nk+n+j)a; —2(j — %)aj,l
(N = Dk +kz+2n);-1(3);
(kg +n);(Nk+n+1); 1
which is the claimed result. Similarly, one can shBit4,+20 = 2(Nk + n + Dhgye10.

=2((N — Dk +n)

4.1.2. Caseli : hyps10 — hano. Next we consider the cas& > [ yci¥m: =

Y o(Tic)idm.i» Where (see section 3.2)

(Tfc)i = (2kg+m+i)e; —icia for m+i=0mod 2

(Tic)i = Chka+m+i+Dcivg — (2ky — 2k + m)c; —ici—g for m+i=1mod?2
Write

n+l

n
hans30 =) bjVous12j + Y ¢janr12j1
i =1

then

n+l

n
Tihap+z0 = Zdj¢>2n+1,2j + ) dido+12j1
=0 -1

J
with d; = 2(kp +n + j)c; — (2j — 1)b;_1 = 0 and
aj=2ky+tn+j+Dcjs1— ko —2k+2n+1Db; — 2jc;
) (N =Dk +kp+2n+1);(3);
(ka+n+1)j(Nk+n+2);

1
=—2((N—2)k+kl+n+5

the claimed multiple ofi4,+2,0. Similarly,

n n
han+10 = E Do + E CiYon2j-1
=0 =1

n n
Tihap+10 = Zaj¢2n,2j + E djp2,2j-1
—0 =1

with a; = 2(ka +n + j)b; — 2jc; which is 2k, + n) times the corresponding coefficient of
a0, Whiled; = 2(ky +n + j)b; — 2(ky — k +n)c; — (2j — 1)bj_1 = 0.



8104 C F Dunk!

4.1.3. Casely : hops10 = hom-11. FOr T2 Y 7o cihmi = S g (T5¢)i (X1x2¢h 1) ONE
has

(Ti¢)i = QN — Dk +m+1)c; — (@Nk+m+i+2cisa+ici_y  for m+i=0mod 2
(Tyc)i = @Nk+m+i+1c; —ici_g for m+i=1mod 2

4.1.4. Casdy : hoyt11 —> homero- FOrTo Y g cixixopm; = Y io(T5¢)i¥m,i ONe has
(Tyc)i = (2ky — 2k + m)c; —ici—1 for m+i=0mod 2
(Tyc)i = Chka+m+i+1D(cie1—¢i) —iciaa for m+i=1mod 2

4.2. Values atl,1,...,1
Substitutingy = 1V = (1,1, ..., 1) € RY in Fy andF; produces

Z Z Gn (ANt = (1 — 25t + 12)~(Nk+D)

n=0 j=0

. , (Nk+1),,_;
— Z tmsm—Zz om—2i (_1)1 ( ) .
. il(m — 2i)!
since only terms witlk + j = 0 mod 2 can have nonzero values; note that the second equality
is familiar as the generating function for Gegenbauer polynomials. To derive this expansion,
write

—(Nk+1)
(1 — 251 + 12)~ (VKD (1 4 2)=Nk+D) <1_ 2st )

1+¢2

Nk+1); . .
D aury) (1412 04149

L

I
o

D i (Nk 1)’*’ (25)] (— 1)/ 12
Jj i=

now letj = m — 2i.

Proposition 5. Forn =0, 1, 2, ... the following hold:
(Nk+1),(N —Dk+1),

han o(AY) =
wolt) nl (ke +n),
(Nk+1),(N - Dk +1),
h n+ 1N ==
4n+1,0(17) n!(k2+n+1),,
hans20(1Y) = hapez1 (1Y) =
(Nk + 1)n((N Dk+1),
haner 1 (1Y
an+1,1(17) = Wy +n+ 1),
Nk+1),+2((N — Dk +1),
hansao(1) = ST D Z DET D,

nl(ky+n+ 1),

Proof. The nonzero cases are alF; summations. For the first caseyg, 2;(1V) =
I (Nk+D) e (D" (=D)"(=n); (Nh+Die)
Wi = i, thus

hapo(1V) =

(=D"(Nk +1), Z (=n)j (ko + (N — Dk + 2n);
n! = (ko +n);j!
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_ ED)"(Nk+ Do (=(N — Dk —n)y

nl(k, +n),
This uses the Chu—Vandermonde sufin ( o b. 1) = % and(—b—n), = (—=1)"(b+1),
for arbitraryb, candn = 0, 1, 2, . ... The other formulae are proved in the same way.[]

4.3. Leading coefficients

Let cof(f, x'x3) denote the coefficient of the monomiaf'x; in the expansion of the
polynomial f interms ofxy, x, . .., xy. We will determine the values of c@f,, ., x{'x5). For
the case = 0 these values agree with evaluatior{to, . . ., 0). Thus evaluatdy and F; at
this point to obtainl—s¢)(1— 2st +12)~**D = gg andr (1— 25t +1%)~**D = 44, respectively.
The terma, is multiplied by(—1) to obtain coefficients at} in 4, 0. By expansion methods
similar to those used previously we obtain

m m—2i om—2i—1 i (k + 1)m*1*i(2k + m)

= t 2 -1
do mz S Y =21

(k + 1)m—i
il(m —2i)!"

a, = Z tm+lsm—2[ 2m—2i(_l)i
m,i

4.3.1. Case4n +¢,¢). The computation fohy, o(1, 0, ...) proceeds as follows:
(=n)j(k+1),(k+n);

nljl(3);

¢2n,2j(17 0,..)= (_1)}1
and so

hano(1,0,..) - kptn Nktn+l
_ (=D)"(k+ 1), (ke — k), (N — Dk + 1),

nl(ko +n),(Nk+n+1),
Clearly, cofha, o, x") = cOf(ha, 0, x3") = han0(1,0,...). The sum is an application of the
Saalschitz formulaz Fa( _'2’ Z b; 1) = % provided—n +a+b+1=c+d. The

corresponding formulae fd%r4n+1,1 are obtained by merely incrementikg(and alsc,) by 1.
Thus

=D"(k+1), (—n,k+n,k2+(N—1)k+2n )
:—3F2 l

COf(hans1.1, X7 x2) = COf(hgyen 1, X165"

_ DM+ Dake+1-K)u (N = Dk + 1),
B nl(kz+n+1),(Nk+n+1), '

+l)

4.3.2. Case(dn + 2 +e,e). FOr ha20(1,0,...) we begin with¢z,+12;(1,0,...) =
(=1 Eul Dy gng

nljl(3);

han20(1,0,.) n! kp+n+1, Nk+n+2 ’
(=D"(k+ 1), (k2 — k) (N — Dk + 1),
- nlky+n+1),(Nk+n+2),
Further, coth2.0, x7"*2) = —COf(han+2,0, X3"*?) = han2.0(L, 0, ...). Replacek, by kp + 1
to obtain the value of cofig,+3.1, X7""3x2) = —COf(hape3 1, x1x5"3).

(=D"(k+1), (—n,k+n+1,k2+(N—1)k+2n+1 )
:—3F2 1
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4.3.3. Casd4n +1,0). Forha,+1,0 NOte thatyo, o; = x1(¢24.2j + P2n.2j-1) aNdYrz, 2j—1 =
—x1¢2,,2j—1. TO sketch the argument, 1,410 = Z;f:o ajYon2j + Z’}:l bjVa2j-1 and
let ¢2,2;(1,0,...) =c; andgy, 2;-1(1,0,...) = d;. ThenZZfzoajcj +eZ?:1(aj —bj)d;
equalscof (ha,+1.0, 1" whene = 1, and cofhgu+1,0, x1x5") whene = —1. The value of

c; was found above, and thus the first sum eqéats = le L, (LD, | For the second
sum,

(kp+ (N — Dk +2n+1);_1(3);
(kp+n+1);(Nk+n+1);
The value old; is calculated similarly t@-,+12; and thus the second sum equals
(N = Dk +n)(=1)" Lk + 1), £ <1—n,k+n +Lhky+(N—Dk+2n+1 1)

aj —b; = (N — Dk +n)

n—Dlkp+n+ D(Nk+n+1)> 2 kp+n+2 Nk+n+2 :
(=D M+ 1), (ko — k +1),_a((N — Dk + 1),
B (n —Dltkz +n +1),(Nk +n +1), '
Combining the two sums and setting= 1 and—1, respectively, we obtain
(=D"(k + 1), (k2 — k), (N — Dk + 1),
cof(h , 4n+l —
(hans1,0, 1) nl(kz +n + Dy (Nk +1 + 1),

and

ko —k+2n
COf(han+1,0, X1X3") = COf(han+1.0, xf'ﬁl)zk—k
”—

4.3.4. Casg4n + 3,0). For h4n+3,0 note thatlﬂg,ﬁl,zj = —X1¢2n+1’2j and w2n+]_’2j_1 =
X1(p2n+1,2j-1 + P2n+1,2j-2). As before, lethazo = Y1 _oajVami) + 27;11 bjWon+12j-1
(not the same coefficients as above) anggii o;_1(1,0,...) = ¢; andeo,+12;(1,0,...) =

dj. Thene Y '_o(—a; + bjs)d; + Y12 bic; equals colha,ao, x"*%) whene = 1 and
cof(hau+3,0, xlxg"+2) whene = —1. By a calculation similar to the previous one the first sum
is found to equal

n+l
(kz ot }) (1)K + 1), (kp — k + D, (N — Dk +1),,

2 nlko+n+1),q(Nk+n+2),
and the second sum is
1\ D"k + 1), (k2 —k+D,((N =Dk +1),
k+n+— .
2 nlko+n+1),:1(Nk+n+2),

Combining the two sums and setting= 1 and—1, respectively, we obtain
(=D k + 1), (k2 — k)ps1 (N — Dk + 1),
nlko+n+1),1a(Nk+n+2),

An+2 An+3y kotk+2n+1l
and cofhansz0, x165"") = —COf(hapsz0, X7") F 7.

cof(hgn+3.0, xf"+3) =

4.4, Norms

For arbitrary polynomials three different inner products have been defined. However, for
harmonic polynomials there is really only one. Write

N
dus vk, k) = [[Ie® [T =22 do )

i=1 1<i<j<N

for the measure on the unit sphefe= {x € R" : |x| = 1}, where & denotes the normalized
roation-invariant surface measure. See formula (2.1) for the definitiop of;&, k7).
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Proposition 6. Supposef, g are harmonic A f = 0 = Agg) homogeneous polynomials of
degreen andn, respectively. Then

f(T1, Tz, .. )g(x) =0 C/RN J(x)g(x) du (x; k, k)

8mn 2" (NkZ)nCS / fg dl'LS-
S

This was shown in theorem 3.8 of [3]; the normalizing constants satiffy du = 1=
cs [¢ dus, (the wellknown Macdonald-Mehta—Selberg integral). Specializing to the harmonic
polynomialsg = ,, ., forwhichT.2g = —T2g we seethatiff (x) = x;*x52 fo(x2, x2, ..., x2)
with g1, &, = 0 or 1, andfy is homogeneous of degreethen
f(Mg) = TETS fo(TE, =TZ,0,...,0e(x) = fo(1,—1,0,..., 0T " T2g (x).

By construction the polynomials, . are pairwise orthogonal so onty, . (T)h, .(x) need be
computed. We begin with the calculation Bf 75 4, .. The answers are best stated using a
notation introduced in [6] as given in the following definition.

Definition 3. Form,n € Z, andm > n let
A(m,n) = (Nk+1),(N — Dk + 1)p(k2)m—a(kz — k)n—bp
wherea = |7 ] andb = | 3].
This is a special case of the generalized Pochhammer symbol for two-part partitions. From
the formulae in section 2.2 we have
T a0 = 2" (=1)"A(2n, 2n)
T gpe10 = 22 H(=1)"A@2n + 1, 2n)
T 2 Ngpi00 = 22(=1)"A(2n + 2, 2n)
T Dohgyan = 2Y2(=1)"A(2n + 1, 2n + 1)
T14”+3h4n+3,0 — 24n+3(_1)n+1A(2n + 2’ n + 1)
T3 ohgazs = 2V (=1)"A(2n + 3, 2n + 1).
We turn to the problem of the evaluationgat—1, 0, ..., 0). In each case, the value will be

expressed in terms of a balancgts series which is obviously positive. This is the result of
applying the Whipple transformation:

F (—n,a,b,c_l)_(1+a—3—n)n(1+a—f—n)n
B\ dier 0 T) T ©@n(fn

—n,a,d —b,d —c )
X4F3<d,l+a—e—n,1+a—f—n’1>
provided—n+a+b+c+1 = d+e+ f (balanced), and € Z.. Settingt = xo = (1, +/-1,0,...)
in the basis polynomials produces the desired values.

Lemma 1. For 0 < j < n, ¢on.2j+1(x0) = 0, ¢2,+1,2j+1(x0) = 0 and

(2k + 1)psj (=1)"(—n) ; (2k +2n + 1)
nljlk+3);(2k + 1)

22k + 2)+j (=1 (=n);
nljlk+3);

¢2ﬂ,2j (XO) =

Gon+1,2j(x0) =
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Proof. Substitutingx = xo in the generating functions yields ;"o >_o ¢ ;(x0) =
(1+2 —t2)((1L +1%)? — 452t?)~**D_ The latter term expands to

. )i .
> s (1) 27k 1)jF2.k r2r e
o jhi!

Now multiply top and bottom by2k + 2),;, replacei + j by n, (also a simple calculation
to multiply the resulting series bl — r2)), and in the denominator exparigk + 2),; =
22 (k+1);(k+3);. O

To illustrate the intermediate steps, consider the case
(2k +1),,(2k + 2n + 1) F —n,ko+ (N —Dk+2n, 3, 2k+n+1 1
nl(2k +1)

k+3 ko+n, Nk+n+1 ’
and transform the series, using= k, + (N — 1)k + 2n andd = k + g The other cases are
done similarly (the casky, .3 incorporates one additional step, see section 4.3.4 above). The

results are:
(2k+1),2k+2n+1)((N — Dk +1),,(ko — k),
hap,0(x0) = (=1)" ,
n!(2k + 1) (ko +n),(Nk+n +1),
L F (—n,k2+(N—1)k+2n,k+1, —n—k+%_1)
a3 k+3 ko —k, (N — Dk +1 :
222k +2),((N — Dk + 1), (k2 — k),
han+2,0(x0) = (=1) Wy +n+ 1), (Nk+n+2),
L F (—n,k2+(N—1)k+2n+1,k+1,—n—k—%_1>
a3 k+3,ky—k, (N —Dk+1 ’
L, (2k+1D),2k+2n+ (N —Dk+ 1), (ko —k+1),
han+1,0(x0) = (—=1) ,
n!'(2k + 1)(kp +n +1),(Nk +n + 1),
CAF (—n,k2+(1v—1)k+2n+1,k+1,—n—k+%_1)
ar3 k+3 ko —k+1,(N—Dk+1 ’
) = (_1)n+1 (2k2 +2n+ 1)(2k + 2)n((N - 1)k + 1)n (k2 — k+1),
nlko+n+1),41(Nk+n+2),
X4F3<—n,k2+(N—1)k+2n+2,k+1,—n—k—%.1)
k+3, ko —k+1,(N—Dk+1 )
The values of the even parts bf,+1.1(x0) andha,+31(xo) are obtained by replacing by
k2 +1in hay+0,0(x0) andha,+2,0(x0), respectively (‘even part’ refers tfy in the expressions
home11(x) = x1x2fo(x2, x3,...)). This completes the calculation of tH& norms of the
harmonic polynomials. ThgFs series allow no further simplification.

hap,0(x0) = (=1)"

han+3,0(x0

5. Discussion

To conclude, we discuss the significance of the results, especially with regard to applications
and indications for further research. The problemthatwas solved here s, in asense, the minimal
approach to constructing harmonic polynomials of type It may turn out that a different
normalization may be more useful or concise; for example, the vajug(1, 0, ...) can be

CV kD, A2n.2n) g similar expressions hold for the other formulae in section 4.3.

i =D«
written as—=— "=a"s
The expression fofih4,.0//? is also somewhat simplified by changing the normalization to
A(4n,0)

A 2ny an.0- Of course thq F3 part stays.



Planar harmonic polynomials of type 8109

5.1. Application

There is a quantum many-body exactly-solvable model associated\yitnamely the spin
Calogero model of Yamamoto and Tsuchiya [10, 11]. This deals Mittlentical particles on

a line with inverse-square mutual repulsion potential and an external harmonic confinement
potential. In addition, the particles have a two-valued spin which can be exchanged between
them. The construction of eigenfunctions in terms of nonsymmetric Jack and generalized
Hermite polynomials was discussed in [7]. The Hamiltonian for the system ¢withk; > 0)

is

N 2
0 2 2 kl(kl_ai)
N ) R e A

i

{ k—O','j + k—'L'ij }
1<iTT<n (x; —xj)%  (x; +x;)?

The ground state for the system is

N w|x)?
) =]k ] |x?—x,?|"exp(— > )
i=1

1<i<j<N

Then the conjugate/Hy ! = 2w(}\ ;x5 + Nk») — Ap. Let f,(x) be a
harmonic and homogeneous polynomial of degreghen forn = 0, 1,2, ... the function
Lff)(w|x|2)fm(x)1//(x) is an eigenfunction o with eigenvalue @& (m + 2n + Nky), where
c=m+ Nk, — 1. Here

(c+ D), i (—n); '

(c) _ -
L0 == c+ 1), il

i=0
denotes the Laguerre polynomial of indexand degree:. The set of all such functions
with m + 2n = s spans all the eigenfunctions with eigenvalue(2 + Nk;). The set
{L9(w|x|?) f,.(x)} was used as a basis for polynomials in the study of inner products [3]
and the Hankel transform [4]. Van Diejen [1] conside#&gl -invariant eigenfunctions of this
type forH. The polynomialg:,, o can produce such invariants by summing over translates:

(1+202_7+ Z Oliffz_/')hzn,o(x).

j>2 2<i<j<N

5.2. Further work

It is still an open problem to find an orthogonal basis for the harmonic homogeneous
polynomials. Such bases are useful in approximation theory and numerical cubature (see
Xu [8,9]). Itis not difficult to write down self-adjoint operators on polynomials, for example
(x;Tj — iji)2 forl <i < j < N. Thisis a useful method for Abelian reflection groups.
However, computer algebra calculations reveal that the characteristic polynomials of these
operators on polynomials of not large degree do not factor lineary(in k;) (for type B).

Hence, one does not expect tractable eigenfunction decompositions. It seems worthwhile to
try to extend to more variables the generating function constructiofgaF; which was the

main device for this paper (that is, consider harmonic polynomials annihilatEddwyi > no;

already the casey = 3 is interesting). Obviously, a more sophisticated way of handling the
different cases will need to be developed. The presentapproachis justtolerable for the different
basis functions involved in the representation theorBgaf It certainly seems that finding
orthogonal bases is considerably more complicated then the construction of honsymmetric
Jack polynomials.
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