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Abstract. The hyperoctahedral group acting onRN is the Weyl group of typeB and is associated
with a two-parameter family of differential-difference operators{Ti : 16 i 6 N}. These operators
are analogous to partial derivative operators. This paper finds all the polynomialsh onRN which
are harmonic,1Bh = 0 and annihilated byTi for i > 2, where the Laplacian1B =

∑N
i=1 T

2
i .

They are given explicitly in terms of a novel basis of polynomials, defined by generating functions.
The harmonic polynomials can be used to find wavefunctions for the quantum many-body spin
Calogero model.

1. Introduction

For each finite reflection group there are families of invariant inner products on the space of
polynomials, defined by an algebraic expression, and by integration with respect to invariant
weight functions on the sphere or on all of Euclidean space. These inner products essentially
coincide on the polynomials harmonic with respect to the associated Laplacian. In this paper
we study certain specific explicit harmonic polynomials associated with the hyperoctahedral
group onRN . For the reflection groups onR2 all the harmonic polynomials are known as
expressions in Jacobi polynomials. Also, orthogonal bases whose elements are of generalized
Hermite (or Laguerre) type, for the Gaussian weight function have been determined by means
of a construction using nonsymmetric Jack polynomials. However, an orthogonal basis for
the weight functions on the sphere (and the ball or the simplex) has not yet been explicitly
found. Here we consider the analogue of ordinary harmonic polynomials in two variables,
but harmonic for theN -variable Laplacian1B ; that is, polynomials annihilated byTi for
i > 2, where{Ti : 1 6 i 6 N} is the set of differential-difference operators of typeB and
1B =

∑N
i=1 T

2
i . In previous work the author introduced a family of polynomials (the ‘p

basis’) for which it is easy to write down polynomials annihilated by any desired subset of
{Ti : 1 6 i 6 N}. In this study it is important to select a set of polynomials for which the
harmonic polynomials have ‘nice’ coefficients. For example, coefficients of hypergeometric
type (Pochhammer symbols) are ‘nice’. We introduce a set of polynomials which are in
theQ-span of thep basis (coefficients independent of the parameters) and which allow nice
expressions. The definition is given by means of generating functions.

For the harmonic polynomials we will find the values at a special point,(1, 1, . . . ,1),
the leading coefficients and theL2 norms; the first two are in closed form using2F1 and3F2

summations, respectively, the last is a balanced4F3 sum. Finally, there is a discussion of
the important applications of the polynomials, especially as wavefunctions for spin Calogero
quantum many-body models.

0305-4470/99/468095+16$30.00 © 1999 IOP Publishing Ltd 8095
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2. Overview of the results

The finite group of orthogonal transformations which is generated by sign changes and
permutation of coordinates onRN is called the Weyl group of typeB, and will be denoted
by WN . There is a family of measures associated withWN in a natural way: for positive
parametersk, k1 let

dµ (x; k, k1) =
N∏
i=1

|xi |2k1
∏

16i<j6N
|x2
i − x2

j |2k exp

(
−|x|

2

2

)
dx. (2.1)

Analysis for functions related to these measures depends on the differential-difference
operators constructed by the author [2]. Note that the polynomial terms in dµ correspond
to linear functions vanishing on the reflecting hyperplanes of the Coxeter groupWN . The
reflections inWN consist of{σi : 16 i 6 N} and{σij , τij : 16 i < j 6 N} defined by

xσi = (x1, . . . ,
i−xi, . . . , xN)

xσij = (x1, . . . ,
i
xj , . . . ,

j
xi, . . . , xN)

xτij = (x1, . . . ,
i−xj , . . . ,− j

xi, . . . , xN).

For notational convenienceσji = σij and τji = τij . We use the same symbols to
indicate the action on functions, for example,σijf (x) := f (xσij ). The differential-difference
(‘Dunkl’) operators of typeB (associated withWN ) are

Ti := ∂

∂xi
+ k1

1− σi
xi

+ k
∑
j 6=i

{
1− σij
xi − xj +

1− τij
xi + xj

}
16 i 6 N.

They are homogeneous of degree−1 on polynomials and commute,TiTj = TjTi . The
Laplacian operator is1B :=∑N

i=1 T
2
i .

In this paper we will determine all polynomialsh on RN which satisfy1Bh = 0 and
Tih = 0 for all i > 2. In the standard case,k = 0 = k1, this implies thath depends only on
x1, x2; this explains the name ‘planar’.

Definition 1. The set of polynomials{φn,j , ψn,j : 06 j 6 n = 0, 1, 2, . . .} is defined by
∞∑
n=0

n∑
j=0

φn,j (x)s
j tn = F0 + F1

∞∑
n=0

n∑
j=0

ψn,j (x)s
j tn = x1(F0 + sF1)− x1F1

in terms of the generating functions (x ∈ RN , and absolute convergence holds for|s| < 4
3 and

|t | < min(1/x2
i : 16 i 6 N)/3):

F0(x; s, t) = 1− st (x2
1 + x2

2) + t2x2
1x

2
2

(1− 2stx2
1 + t2x4

1)(1− 2stx2
2 + t2x4

2)

N∏
i=1

(1− 2stx2
i + t2x4

i )
−k

F1(x; s, t) = t (x2
1 − x2

2)

(1− 2stx2
1 + t2x4

1)(1− 2stx2
2 + t2x4

2)

N∏
i=1

(1− 2stx2
i + t2x4

i )
−k.

In each case, the first and second terms on the right-hand side produce the basis functions
with n + j = 0 mod 2 andn + j = 1 mod 2, respectively. The polynomialsφn,j andψn,j are
of degrees 2n and 2n + 1 in x, respectively, for 06 j 6 n. Because of the invariance of1B
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under the subgroupW2 acting on the first two variables, there is a basis of planar harmonic
polynomials in which all the monomials have the same parities of the exponents ofx1, x2; of
course they are even in each of the remaining variables.

2.1. The harmonic polynomials

The basis elements are labelledhn,0 andhn,1, wherexn1x
ε
2 is the term inh with the highest

power ofx1 andε = 0 or 1. The formulae depend on the mod 4 residues:

h4n,0 =
n∑
j=0

(2(N − 1)k + k1 + 1
2 + 2n)j ( 1

2)j

((N − 1)k + k1 + 1
2 + n)j (Nk + n + 1)j

φ2n,2j

h4n+2,0 =
n∑
j=0

(2(N − 1)k + k1 + 3
2 + 2n)j ( 1

2)j

((N − 1)k + k1 + 3
2 + n)j (Nk + n + 2)j

φ2n+1,2j

h4n+1,1 = x1x2

n∑
j=0

(2(N − 1)k + k1 + 3
2 + 2n)j ( 1

2)j

((N − 1)k + k1 + 3
2 + n)j (Nk + n + 1)j

φ2n,2j

h4n+3,1 = x1x2

n∑
j=0

(2(N − 1)k + k1 + 5
2 + 2n)j ( 1

2)j

((N − 1)k + k1 + 5
2 + n)j (Nk + n + 2)j

φ2n+1,2j .

The following are of mixed parity:

h4n+1,0 =
n∑
j=0

(2(N − 1)k + k1 + 3
2 + 2n)j ( 1

2)j

((N − 1)k + k1 + 3
2 + n)j (Nk + n + 1)j

ψ2n,2j

+
n∑
j=1

(2(N − 1)k + k1 + 3
2 + 2n)j−1(

1
2)j

((N − 1)k + k1 + 3
2 + n)j−1(Nk + n + 1)j

ψ2n,2j−1

and

h4n+3,0 =
n∑
j=0

(2(N − 1)k + k1 + 5
2 + 2n)j ( 1

2)j

((N − 1)k + k1 + 3
2 + n)j (Nk + n + 2)j

ψ2n+1,2j

+
n+1∑
j=1

(2(N − 1)k + k1 + 5
2 + 2n)j−1(

1
2)j

((N − 1)k + k1 + 3
2 + n)j (Nk + n + 2)j−1

ψ2n+1,2j−1.

There are two other basis elements, defined ash4n,1 := σ12h4n+1,0 and h4n+2,1 :=
σ12h4n+3,0. Furthermore,σ12h4n,0 = h4n,0, σ12h4n+1,1 = h4n+1,1, and σ12h4n+2,0 =
−h4n+2,0, σ12h4n+3,1 = −h4n+3,1 from the obvious symmetry properties of the generating
functions.

2.2. Action ofTi

Since1B commutes with eachTi the action ofT1 orT2 on any of the polynomialshn,ε produces
a polynomial annihilated by1B andTi, i > 2, that is, a scalar multiple of another polynomial
of this family. Specifically, the results are (forn = 0, 1, 2, . . .):

T1h4n,0 = 2((N − 1)k + n)h4n−1,0

T1h4n+3,0 = −2((N − 2)k + k1 + n + 1
2)h4n+2,0

T1h4n+2,0 = 2(Nk + n + 1)h4n+1,0

T1h4n+1,0 = 2((N − 1)k + k1 + n + 1
2)h4n,0
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T2h4n+3,0 = 2(Nk + n + 1)h4n+1,1

T2h4n+1,1 = 2((N − 2)k + k1 + n + 1
2)h4n+1,0

T2h4n+1,0 = 2((N − 1)k + n)h4n−1,1

T2h4n+3,1 = −2((N − 1)k + k1 + n + 3
2)h4n+3,0.

These formulae (together with the claimTihn,ε = 0 for i > 2) already imply that
1Bhn,ε = 0 becauseT 2

1 h4n,0 = ch4n−2,0 for some constantc andT 2
2 h4n,0 = σ12T

2
1 σ12h4n,0 =

σ12T
2
1 h4n,0 = −ch4n−2,0. All the other polynomialshm,ε can be obtained by applyingT1 or T2

often enough to someh4n,0 with 4n > m. In subsequent sections we will derive the values of
‖hn,ε‖22, hn,ε(1, 1, . . . ,1), hn,ε(1, 0, . . . ,0) and the coefficients of the leading terms. All but
theL2 norms are products of linear factors in the parameters, while the norms are expressed
as sums of balanced4F3 series.

3. Symbolic calculus

The results described above depend on the basis of polynomials introduced in [5] for type
A, [6] for typeB. The idea is to replace the variables in the type-A basis byx2

1, x
2
2, . . . , x

2
N and

then use the expressions forTi in terms of corresponding type-A operators. Throughout let
y = (y1, y2, . . . , yN) = (x2

1, x
2
2, . . . , x

2
N) for x ∈ RN . The type-A Dunkl operator is defined

by

T̂i = ∂

∂yi
+ k

∑
j 6=i

1− (ij)
yi − yj , 16 i 6 N

where (ij) denotes the transposition ofyi and yj , the effect ofσij or τij on the squared
variables. The polynomials inx ∈ RN are spanned by polynomials of the formxεg(y) where
ε = (ε1, ε2, . . . , εN) andxε = xε1

1 x
ε2
2 . . . with eachεi = 0 or 1.

Proposition 1. Letf (x) = xεg(y) with eachεi = 0 or 1. For i = 1, 2, . . . , N ,

Tif (x) = 2xix
εT̂ig(y) if εi = 0

Tif (x) = 2
xε

xi

((
k1− 1

2

)
g + T̂i(yig)− k

∑
j

{(ij)g : εj = 1, j 6= i)}
)

if εi = 1.

This is proposition 2.1 in [6]. Thep basis for the symmetric group action is constructed
as follows: for 16 i 6 N the polynomialspn(yi; y) are given by the generating function

∞∑
n=0

pn(yi; y)rn = (1− ryi)−1
N∏
j=1

(1− ryj )−k

then forα = (α1, . . . , αN) ∈ ZN+ the collection of compositions, the basis elementpα =∏N
i=1pαi (yi; y). The key property is that̂Tjpn(yi; y) = 0 for j 6= i. It was shown in [5] that

T̂ipα = (Nk + αi)pαi−1(yi; y)
∏
m6=i

pαm(ym; y)

+k
∑
j 6=i

{ αj−1∑
m=0

(pαi+αj−1−m(yi; y)pm(yj ; y)

−pm(yi; y)pαi+αj−1−m(yj ; y))
∏
n6=i,j

pαn(yn; y)
}

(3.1)
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if αi > 0, andT̂ipα = 0 if αi = 0. On the right-hand side of this formula the same term may
appear twice, but this has no relevance for the intended use. We will set up a linear isomorphism
between the span of thep basis and polynomials in the formal variablesp1, p2, . . . , pN which
is not generally multiplicative but does allow a simple formula forT̂i .

Definition 2. The linear isomorphism9 between the span of thep basis and the spaceP of
polynomials in the formal variablesp1, p2, . . . , pN is given by9 : pα 7−→ p

α1
1 p

α2
2 . . . p

αN
N

(and extended by linearity). Further, the linear transformationsζi,j andηi onP are defined
by ζi,jp

α1
1 p

α2
2 . . . p

αN
N = p

αi+αj
i

∏
m6=i,j p

αm
m for i 6= j , and ηi is evaluation atpi = 0, for

16 i 6 N . (That is,ζi,j replacespj bypi , andηi replacespi by 0.)

It is clear that9 commutes with theSN action. We use the simplified notation̂Ti for the
operator9T̂i9−1 onP.

Proposition 2. For 16 i 6 N , the operatorT̂i acts on polynomials inP by

T̂i = ∂

∂pi
+Nk

1− ηi
pi

+ k
∑
j 6=i

ζi,j + ζj,i − 1− (i, j)
pi − pj .

Proof. It suffices to examine the effect of the formula on monomialsp
α1
1 p

α2
2 . . . p

αN
N and

for i = 1. The first two terms produce(α1 +Nk) if α1 > 0, or otherwise 0. In the sum, the
(typical) term forj = 2 is(pα1+α2

1 +pα1+α2
2 −pα1

1 p
α2
2 −pα2

1 p
α1
2 )
∏N
m=3p

αm
m /(p1−p2). A simple

calculation shows this is the image under9 of the corresponding term in equation (3.1).�

We will use generating functions to determine the effects ofT1 andT2 on the polynomials
defined in the previous sections (now we are considering the type-B operators). For this purpose
we consider the casesf (p), x1f (p), x1x2f (p) wheref (p) is a formal series inp = (p1, p2)

(the validity of term-by-term action comes from the same argument used to justify term-by-
term differentiation of a power series inside its disc of convergence). In the following, we use
the notation

δ1,2f (p1, p2) = (f (p1, p1) + f (p2, p2)− f (p1, p2)− f (p2, p1))/(p1− p2).

Proposition 3. For a power seriesf (p1, p2) (absolutely convergent in the region{(p1, p2) :
|p1| < 1, |p2| < 1) the following hold:

(1) T1f (p) = 2x1(
∂f (p)

∂p1
+Nk f (p1,p2)−f (0,p2)

p1
+ kδ1,2f (p)),

(2) T1(x1f (p)) = 2(((N − 1)k + k1 + 1
2)f (p) + p1

∂f (p)

∂p1
+ kδ1,2(p1f (p))),

(3) T2(x1x2f (p)) = 2x1(((N −1)k + k1 + 1
2)f (p)+p2

∂f (p)

∂p2
− kδ1,2(p2f (p))− kf (p2, p1)),

(4) T2(x1f (p)) = 2x1x2(
∂f (p)

∂p2
+Nk f (p1,p2)−f (p1,0)

p2
− kδ1,2f (p)).

Proof. Formulae (1) and (4) follow immediately from proposition 1. It was shown in lemma 2.3
of [6] that T̂iyi = T̂i ρ̂i − k, whereρ̂i is the conjugate under9 of multiplication bypi acting
onP. Together with proposition 2 this proves formulae (2) and (3). �

By the fundamental properties of thep basis,Ti(x
ε1
1 x

ε2
2 f )(p1, p2) = 0 for all i > 2, and

ε1, ε2 = 0 or 1. This applies to all the polynomials used in what follows. The images under9

of the generating functionsF0, F1 defined in section 2 are in fact simple rational functions in
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p = (p1, p2). Indeed, for indeterminatesu1, u2, from the definition of thep basis it follows
that

9

(
(1− u1y1)

−1(1− u2y2)
−1

N∏
i=1

{(1− u1yi)(1− u2yi)}−k
)

= 9
( ∞∑
m,n=0

p(m,n)u
m
1 u

n
2

)

=
∞∑

m,n=0

pm1 p
n
2u

m
1 u

n
2 = (1− u1p1)

−1(1− u2p2)
−1. (3.2)

The desired expressions result from changing variables tou1 = tz, u2 = tz−1, and also
u1 = tz−1, u2 = tz and s = 1

2(z + z−1); then the two terms are combined by addition
and subtraction (symmetric and skew-symmetric under (1), (2), respectively). To ensure
convergence some region must be chosen, for example,|s| < 4

3 and|t | < 1/(3 max(|p1|, |p2|))
(ands, t ∈ C). This is valid because|r − 1

r
| 6 2|s| 6 (r + 1

r
) wherer = |z| andz ∈ C, thus

|s| < 4
3 implies 1

3 < |z| < 3.
The method for computing the effect ofTi on the polynomialsφn,j andψn,j is to applyTi

to the generating functions and express the result by means of combinations of∂
∂s

and ∂
∂t

and
multiplication bys, t . The two basic functions are

w1 = (1− ztp1)
−1(1− z−1tp2)

−1

w2 = (1− z−1tp1)
−1(1− ztp2)

−1.

Then let

f0 = 1
2(w1 +w2) = 1− st (p1 + p2) + t2p1p2

(1− 2stp1 + t2p2
1)(1− 2stp2 + t2p2

2)

f1 = (z− z−1)−1(w1− w2) = t (p1− p2)

(1− 2stp1 + t2p2
1)(1− 2stp2 + t2p2

2)
.

The same formulae apply to the images under9−1.

Proposition 4. The generating functions in definition 1 satisy9F0 = f0 and9F1 = f1.

Proof. Apply 9−1 tow1 andw2 using equation (3.2), then both9−1w1 and9−1w2 have the
common factor

∏N
i=1((1− u1yi)(1− u2yi))

−k =∏N
i=1(1− 2styi + t2y2

i )
−k. The parts of the

calculation involving(1− uiy1)
−1 and(1− uiy2)

−1, i = 1 or 2 proceed just as those withw1

andw2. �

3.1. Action ofTi on the generating functions

Now we can use the symbolic calculus onf0 andf1. Write g0 = f0 + sf1 andg1 = −f1

for the generating functions for{ψn,j }. Thenw1 = f0 + 1
2(z − z−1)f1 = g0 + z−1g1 and

w2 = f0− 1
2(z− z−1)f1 = g0 +zg1. First, the effect ofδ1,2 on various functions is calculated:

δ1,2f0 = tf1, δ1,2f1 = 0, δ1,2(p2f0) = sf1, δ1,2(p2f1) = f1, δ1,2(g0) = tf1, δ1,2(g1) =
0, δ1,2(p1g0) = 0, δ1,2(p1g1) = f1. These simple relations are the reason for using this
particular set of functions.
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The differentiations can be done onw1 andw2, separately. It is easy to verify that

∂w1

∂p1
= zt

(
w1 +

t

2

∂w1

∂t

)
+
z2t

2

∂w1

∂z

∂w2

∂p1
= t

z

(
w2 +

t

2

∂w2

∂t

)
− t

2

∂w2

∂z
.

Further,p1
∂w1
∂p1
= 1

2(
∂
∂t
− ∂

∂z
)w1, p2

∂w1
∂p1
= 1

2(
∂
∂t

+ ∂
∂z
)w2, (1− η1)w1/p1 = ztw1 and

(1−η1)w2/p1 = (t/z)w2. In the expressions for∂f0

∂p1
and ∂f1

∂p1
the following equations are used:

zw1 + z−1w2 = 2sg0 + 2g1 z2∂w1

∂z
− ∂w2

∂z
= 2(s2 − 1)

∂g0

∂s
− 2g1

(z− z−1)−1(zw1− z−1w2) = g0 (z− z−1)−1

(
z2∂w1

∂z
+
∂w2

∂z

)
= s ∂g0

∂s
+
∂g1

∂s

z

(
∂w1

∂z
− ∂w2

∂z

)
= −2sg1 + (1− s2)

∂g1

∂s

z(z− z−1)−1

(
∂w1

∂z
+
∂w2

∂z

)
= ∂g0

∂s
+ g1 + s

∂g1

∂s
.

These, as well as the following equations can be proven by direct verification (expressw1

andw2 in terms ofg0 andg1, or f0 andf1; of course ∂
∂z
= 1

2(1− z−2) ∂
∂s

). The formulae are
grouped by type as given in sections 3.1.1–3.1.4.

3.1.1. CaseT1f (y) : φ→ ψ .

T1f0 = 2x1t

([
(Nk + 1)s +

st

2

∂

∂t
+
s2 − 1

2

∂

∂s

]
g0 +

[
(N − 1)k +

1

2
+
t

2

∂

∂t

]
g1

)
T1f1 = 2x1t

([
(Nk + 1) +

t

2

∂

∂t
+
s

2

∂

∂s

]
g0 +

1

2

∂

∂s
g1

)
.

3.1.2. CaseT2(x1x2f (y)) : x1x2φ→ ψ .

T2(x1x2f0) = 2x1

([
(N − 2)k + k1 +

1

2
+
t

2

∂

∂t

]
g0

+

[
s

(
(N − 1)k + k1 + 1 +

t

2

∂

∂t

)
+
s2 − 1

2

∂

∂s

]
g1

)
T2(x1x2f1) = 2x1

(
−1

2

∂

∂s
g0 −

[
(N − 1)k + k1 + 1 +

t

2

∂

∂t
+
s

2

∂

∂s

]
g1

)
.

3.1.3. CaseT1(x1f (y)) : ψ → φ.

T1(x1g0) = 2

([
(N − 1)k + k1 +

1

2
+
t

2

∂

∂t
+
s

2

∂

∂s

]
f0

+

[
s

(
(N − 1)k + k1 + 1 +

t

2

∂

∂t

)
+
s2 − 1

2

∂

∂s

]
f1

)
T1(x1g1) = 2

(
−1

2

∂

∂s
f0 −

[
(N − 2)k + k1 +

1

2
+
t

2

∂

∂t

]
f1

)
.
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3.1.4. CaseT2(x1f (y)) : ψ → x1x2φ.

T2(x1g0) = 2x1x2t

(
−1

2

∂

∂s
f0 +

[
(N − 1)k + 1 +

t

2

∂

∂t

]
f1

)
T2(x1g1) = 2x1x2t

([
(Nk + 1) +

t

2

∂

∂t
+
s

2

∂

∂s

]
f0

−
[
s

(
Nk +

3

2
+
t

2

∂

∂t

)
+

1

2
(s2 − 1)

∂

∂s

]
f1

)
.

3.2. Action ofTi on basis polynomials

Perusal of these formulae reveals that terms involvingk are almost ‘on the diagonal’, that is,
settingk = 0 does not noticeably simplify the formulae. In the{φn,j , ψn,j } basis, thek 6= 0
case is no more complicated thank = 0. This illustrates the advantage of these polynomials
over the ordinaryx basis. In each of the formulae, the result of expanding the equations in
{φn,j } for fi and in{ψn,j } for gi , (i = 0 or 1) and matching up coefficients ofsj tn on both
sides leads to the following (grouped by the parity ofn + j ) results.

3.2.1.n + j = 0 mod 2.

T1φn,j = (2Nk + n + j)ψn−1,j−1 + (2(N − 1)k + n)ψn−1,j − (j + 1)ψn−1,j+1

T1ψn,j = (2(N − 1)k + 2k1 + n + j + 1)(φn,j + φn,j−1)− (j + 1)φn,j+1

T2(x1x2φn,j ) = (2(N − 2)k + 2k1 + n + 1)ψn,j + (2(N − 1)k + 2k1 + n + j + 1)ψn,j−1

−(j + 1)ψn,j+1

T2ψn,j = x1x2((2(N − 1)k + n + 1)φn−1,j − (j + 1)φn−1,j+1).

3.2.2.n + j = 1 mod 2.

T1φn,j = (2Nk + n + j + 1)ψn−1,j + (j + 1)ψn−1,j+1

T1ψn,j = −(2(N − 2)k + 2k1 + n + 1)φn,j − (j + 1)φn,j+1

T2(x1x2φn,j ) = −(2(N − 1)k + 2k1 + n + j + 2)ψn,j − (j + 1)ψn,j+1

T2ψn,j = x1x2((2Nk + n + j + 1)(φn−1,j − φn,j−1) + (j + 1)φn−1,j+1).

Notice that each expression has no more than three different polynomials on the right-hand
side. In the next section we use these to determine the harmonic polynomials.

4. Properties of the harmonic polynomials

Here we demonstrate the action ofT1, T2 on the harmonic polynomials, which suffices to show
1Bhn,ε = 0 for each such polynomial, as mentioned before. By construction the polynomials
defined in section 2.1 satisfyTihn,ε = 0 for i > 2; which is sufficient to establish the formulae
of section 2.2. In a sense the proofs depend on induction. Since the computations ofTihn,ε are
somewhat repetitive we will not give details on each formula. The calculations are direct; the
definitions ofF0, F1 andhn,ε were formulated after computer-algebra-aided experimentation.
In addition, we determine the values at(1, 1, . . . ,1), (1, 0, . . . ,0) and theL2 norms.
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4.1. The action ofTi onh

There are four main cases, each with two parts. Becausek1 always appears in the same way
we introduce the (abbreviation) notation:

k2 = (N − 1)k + k1 + 1
2 .

4.1.1. CaseT1 : h2m,0 → h2m−1,0. We begin with the proof ofT1h4n,0 = 2((N − 1)k +
n)h4n−1,0, for n > 1. We writeT1

∑m
i=0 ciφm,i =

∑m−1
i=0 (T

∗
1 c)iψm−1,i , then

(T ∗1 c)i = (2(N − 1)k +m)ci + ici−1 for m + i = 0 mod 2

(T ∗1 c)i = (2Nk +m + i + 1)(ci+1 + ci)− ici−1 for m + i = 1 mod 2.

These follow from the equations in section 3.2. Now leth4n,0 =
∑n

j=0 ajφ2n,2j

with aj = ((N−1)k+k2+2n)j ( 1
2 )j

(k2+n)j (Nk+n+1)j
. Use the above equations withm = 2n, then T1h4n,0 =∑n−1

j=0 bjψ2n−1,2j +
∑n

j=1 cjψ2n−1,2j−1 with bj = 2((N − 1)k + n)aj and

cj = 2(Nk + n + j)aj − 2(j − 1
2)aj−1

= 2((N − 1)k + n)
((N − 1)k + k2 + 2n)j−1(

1
2)j

(k2 + n)j (Nk + n + 1)j−1

which is the claimed result. Similarly, one can showT1h4n+2,0 = 2(Nk + n + 1)h4n+1,0.

4.1.2. CaseT1 : h2m+1,0 → h2m,0. Next we consider the caseT1
∑m

i=0 ciψm,i =∑m
i=0(T

∗
1 c)iφm,i , where (see section 3.2)

(T ∗1 c)i = (2k2 +m + i)ci − ici−1 for m + i = 0 mod 2

(T ∗1 c)i = (2k2 +m + i + 1)ci+1− (2k2 − 2k +m)ci − ici−1 for m + i = 1 mod 2.

Write

h4n+3,0 =
n∑
j=0

bjψ2n+1,2j +
n+1∑
j=1

cjψ2n+1,2j−1

then

T1h4n+3,0 =
n∑
j=0

ajφ2n+1,2j +
n+1∑
j=1

djφ2n+1,2j−1

with dj = 2(k2 + n + j)cj − (2j − 1)bj−1 = 0 and

aj = 2(k2 + n + j + 1)cj+1− (2k2 − 2k + 2n + 1)bj − 2jcj

= −2

(
(N − 2)k + k1 + n +

1

2

)
((N − 1)k + k2 + 2n + 1)j ( 1

2)j

(k2 + n + 1)j (Nk + n + 2)j

the claimed multiple ofh4n+2,0. Similarly,

h4n+1,0 =
n∑
j=0

bjψ2n,2j +
n∑
j=1

cjψ2n,2j−1

T1h4n+1,0 =
n∑
j=0

ajφ2n,2j +
n∑
j=1

djφ2n,2j−1

with aj = 2(k2 + n + j)bj − 2jcj which is 2(k2 + n) times the corresponding coefficient of
h4n,0, while dj = 2(k2 + n + j)bj − 2(k2 − k + n)cj − (2j − 1)bj−1 = 0.
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4.1.3. CaseT2 : h2m+1,0 → h2m−1,1. For T2
∑m

i=0 ciψm,i =
∑m−1

i=0 (T
∗
2 c)i(x1x2φm−1,i ) one

has

(T ∗2 c)i = (2(N − 1)k +m + 1)ci − (2Nk +m + i + 2)ci+1 + ici−1 for m + i = 0 mod 2

(T ∗2 c)i = (2Nk +m + i + 1)ci − ici−1 for m + i = 1 mod 2.

4.1.4. CaseT2 : h2m+1,1→ h2m+1,0. ForT2
∑m

i=0 cix1x2φm,i =
∑m

i=0(T
∗
2 c)iψm,i one has

(T ∗2 c)i = (2k2 − 2k +m)ci − ici−1 for m + i = 0 mod 2

(T ∗2 c)i = (2k2 +m + i + 1)(ci+1− ci)− ici−1 for m + i = 1 mod 2.

4.2. Values at(1, 1, . . . ,1)

Substitutingx = 1N = (1, 1, . . . ,1) ∈ RN in F0 andF1 produces
∞∑
n=0

n∑
j=0

φn,j (1
N)sj tn = (1− 2st + t2)−(Nk+1)

=
∑
m,i

tmsm−2i2m−2i (−1)i
(Nk + 1)m−i
i!(m− 2i)!

since only terms withn+ j = 0 mod 2 can have nonzero values; note that the second equality
is familiar as the generating function for Gegenbauer polynomials. To derive this expansion,
write

(1− 2st + t2)−(Nk+1) = (1 + t2)−(Nk+1)

(
1− 2st

1 + t2

)−(Nk+1)

=
∞∑
j=0

(Nk + 1)j
j !

(2st)j (1 + t2)−(Nk+1+j)

=
∞∑
j=0

∞∑
i=0

(Nk + 1)j+i

j !i!
(2s)j (−1)i t2i+j

now letj = m− 2i.

Proposition 5. For n = 0, 1, 2, . . . the following hold:

h4n,0(1
N) = (Nk + 1)n((N − 1)k + 1)n

n!(k2 + n)n

h4n+1,0(1
N) = (Nk + 1)n((N − 1)k + 1)n

n!(k2 + n + 1)n
h4n+2,0(1

N) = h4n+3,1(1
N) = 0

h4n+1,1(1
N) = (Nk + 1)n((N − 1)k + 1)n

n!(k2 + n + 1)n

h4n+3,0(1
N) = (Nk + 1)n+1((N − 1)k + 1)n

n!(k2 + n + 1)n+1
.

Proof. The nonzero cases are all2F1 summations. For the first case,φ2n,2j (1N) =
22j (Nk+1)n+j (−1)n−j

(n−j)!(2j)! = (−1)n(−n)j (Nk+1)n+j

n!j !( 1
2 )j

, thus

h4n,0(1
N) = (−1)n(Nk + 1)n

n!

n∑
j=0

(−n)j (k2 + (N − 1)k + 2n)j
(k2 + n)j j !
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= (−1)n(Nk + 1)n(−(N − 1)k − n)n
n!(k2 + n)n

.

This uses the Chu–Vandermonde sum2F1

(−n, b
c
; 1
)
= (c−b)n

(c)n
; and(−b−n)n = (−1)n(b+1)n

for arbitraryb, c andn = 0, 1, 2, . . . . The other formulae are proved in the same way.�

4.3. Leading coefficients

Let cof(f, xm1 x
n
2) denote the coefficient of the monomialxm1 x

n
2 in the expansion of the

polynomialf in terms ofx1, x2, . . . , xN . We will determine the values of cof(hm,ε, xm1 x
ε
2). For

the caseε = 0 these values agree with evaluation at(1, 0, . . . ,0). Thus evaluateF0 andF1 at
this point to obtain(1−st)(1−2st +t2)−(k+1) = a0 andt (1−2st +t2)−(k+1) = a1, respectively.
The terma1 is multiplied by(−1) to obtain coefficients ofxn2 in hn,0. By expansion methods
similar to those used previously we obtain

a0 =
∑
m,i

tmsm−2i2m−2i−1(−1)i
(k + 1)m−1−i (2k +m)

i!(m− 2i)!

a1 =
∑
m,i

tm+1sm−2i2m−2i (−1)i
(k + 1)m−i
i!(m− 2i)!

.

4.3.1. Case (4n + ε, ε). The computation forh4n,0(1, 0, . . .) proceeds as follows:

φ2n,2j (1, 0, . . .) = (−1)n
(−n)j (k + 1)n(k + n)j

n!j !( 1
2)j

and so

h4n,0(1, 0, . . .) = (−1)n(k + 1)n
n!

3F2

(−n, k + n, k2 + (N − 1)k + 2n
k2 + n,Nk + n + 1

; 1
)

= (−1)n(k + 1)n(k2 − k)n((N − 1)k + 1)n
n!(k2 + n)n(Nk + n + 1)n

.

Clearly, cof(h4n,0, x
4n
1 ) = cof(h4n,0, x

4n
2 ) = h4n,0(1, 0, . . .). The sum is an application of the

Saalscḧutz formula3F2(
−n, a, b
c, d

; 1) = (c−a)n(d−a)n
(c)n(d)n

, provided−n + a + b + 1 = c + d. The

corresponding formulae forh4n+1,1 are obtained by merely incrementingk1 (and alsok2) by 1.
Thus

cof(h4n+1,1, x
4n+1
1 x2) = cof(h4n+1,1, x1x

4n+1
2 )

= (−1)n(k + 1)n(k2 + 1− k)n((N − 1)k + 1)n
n!(k2 + n + 1)n(Nk + n + 1)n

.

4.3.2. Case(4n + 2 + ε, ε). For h4n+2,0(1, 0, . . .) we begin withφ2n+1,2j (1, 0, . . .) =
(−1)n (−n)j (k+1)n+j

n!j !( 1
2 )j

and

h4n+2,0(1, 0, . . .) = (−1)n(k + 1)n
n!

3F2

(−n, k + n + 1, k2 + (N − 1)k + 2n + 1
k2 + n + 1, Nk + n + 2

; 1
)

= (−1)n(k + 1)n(k2 − k)n((N − 1)k + 1)n
n!(k2 + n + 1)n(Nk + n + 2)n

.

Further, cof(h4n+2,0, x
4n+2
1 ) = −cof(h4n+2,0, x

4n+2
2 ) = h4n+2,0(1, 0, . . .). Replacek2 by k2 + 1

to obtain the value of cof(h4n+3,1, x
4n+3
1 x2) = −cof(h4n+3,1, x1x

4n+3
2 ).
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4.3.3. Case(4n + 1, 0). Forh4n+1,0 note thatψ2n,2j = x1(φ2n,2j + φ2n,2j−1) andψ2n,2j−1 =
−x1φ2n,2j−1. To sketch the argument, leth4n+1,0 =

∑n
j=0 ajψ2n,2j +

∑n
j=1 bjψ2n,2j−1 and

let φ2n,2j (1, 0, . . .) = cj andφ2n,2j−1(1, 0, . . .) = dj . Then
∑n

j=0 aj cj + ε
∑n

j=1(aj − bj )dj
equalscof (h4n+1,0, x

4n+1
1 ) whenε = 1, and cof(h4n+1,0, x1x

4n
2 ) whenε = −1. The value of

cj was found above, and thus the first sum equals(−1)n(k+1)n(k2−k+1)n((N−1)k+1)n
n!(k2+n+1)n(Nk+n+1)n

. For the second
sum,

aj − bj = ((N − 1)k + n)
(k2 + (N − 1)k + 2n + 1)j−1(

1
2)j

(k2 + n + 1)j (Nk + n + 1)j
.

The value ofdj is calculated similarly toφ2n+1,2j and thus the second sum equals

((N − 1)k + n)(−1)n−1(k + 1)n
(n− 1)!(k2 + n + 1)(Nk + n + 1)

3F2

(
1− n, k + n + 1, k2 + (N − 1)k + 2n + 1

k2 + n + 2, Nk + n + 2
; 1
)

= (−1)n−1(k + 1)n(k2 − k + 1)n−1((N − 1)k + 1)n
(n− 1)!(k2 + n + 1)n(Nk + n + 1)n

.

Combining the two sums and settingε = 1 and−1, respectively, we obtain

cof(h4n+1,0, x
4n+1
1 ) = (−1)n(k + 1)n(k2 − k)n((N − 1)k + 1)n

n!(k2 + n + 1)n(Nk + n + 1)n
and

cof(h4n+1,0, x1x
4n
2 ) = cof(h4n+1,0, x

4n+1
1 )

k2 − k + 2n

k2 − k .

4.3.4. Case(4n + 3, 0). For h4n+3,0 note thatψ2n+1,2j = −x1φ2n+1,2j andψ2n+1,2j−1 =
x1(φ2n+1,2j−1 + φ2n+1,2j−2). As before, leth4n+3,0 =

∑n
j=0 ajψ2n+1,2j +

∑n+1
j=1 bjψ2n+1,2j−1

(not the same coefficients as above) and letφ2n+1,2j−1(1, 0, . . .) = cj andφ2n+1,2j (1, 0, . . .) =
dj . Thenε

∑n
j=0(−aj + bj+1)dj +

∑n+1
j=1 bj cj equals cof(h4n+3,0, x

4n+3
1 ) when ε = 1 and

cof(h4n+3,0, x1x
4n+2
2 ) whenε = −1. By a calculation similar to the previous one the first sum

is found to equal(
k2 + n +

1

2

)
(−1)n+1(k + 1)n(k2 − k + 1)n((N − 1)k + 1)n

n!(k2 + n + 1)n+1(Nk + n + 2)n
and the second sum is(

k + n +
1

2

)
(−1)n(k + 1)n(k2 − k + 1)n((N − 1)k + 1)n

n!(k2 + n + 1)n+1(Nk + n + 2)n
.

Combining the two sums and settingε = 1 and−1, respectively, we obtain

cof(h4n+3,0, x
4n+3
1 ) = (−1)n+1(k + 1)n(k2 − k)n+1((N − 1)k + 1)n

n!(k2 + n + 1)n+1(Nk + n + 2)n
and cof(h4n+3,0, x1x

4n+2
2 ) = −cof(h4n+3,0, x

4n+3
1 ) k2+k+2n+1

k2−k .

4.4. Norms

For arbitrary polynomials three different inner products have been defined. However, for
harmonic polynomials there is really only one. Write

dµS (x; k, k1) =
N∏
i=1

|xi |2k1
∏

16i<j6N
|x2
i − x2

j |2k dω (x)

for the measure on the unit sphereS = {x ∈ RN : |x| = 1}, where dω denotes the normalized
roation-invariant surface measure. See formula (2.1) for the definition of dµ(x; k, k1).
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Proposition 6. Supposef, g are harmonic (1Bf = 0= 1Bg) homogeneous polynomials of
degreem andn, respectively. Then

f (T1, T2, . . .)g(x)|x=0 = c
∫
RN
f (x)g(x) dµ (x; k, k1)

= δmn2n(Nk2)ncS

∫
S

fg dµS.

This was shown in theorem 3.8 of [3]; the normalizing constants satisfyc
∫
RN dµ = 1=

cS
∫
S

dµS , (the well known Macdonald–Mehta–Selberg integral). Specializing to the harmonic
polynomialsg = hn,ε, for whichT 2

2 g = −T 2
1 gwe see that iff (x) = xε1

1 x
ε2
2 f0(x

2
1, x

2
2, . . . , x

2
N)

with ε1, ε2 = 0 or 1, andf0 is homogeneous of degreem then

f (T )g(x) = T ε1
1 T

ε2
2 f0(T

2
1 ,−T 2

1 , 0, . . . ,0)g(x) = f0(1,−1, 0, . . . ,0)T ε1+2m
1 T

ε2
2 g(x).

By construction the polynomialshn,ε are pairwise orthogonal so onlyhn,ε(T )hn,ε(x) need be
computed. We begin with the calculation ofT n1 T

ε
2 hn,ε. The answers are best stated using a

notation introduced in [6] as given in the following definition.

Definition 3. For m, n ∈ Z+ andm > n let

3(m, n) = (Nk + 1)a((N − 1)k + 1)b(k2)m−a(k2 − k)n−b
wherea = bm2 c andb = b n2c.

This is a special case of the generalized Pochhammer symbol for two-part partitions. From
the formulae in section 2.2 we have

T 4n
1 h4n,0 = 24n(−1)n3(2n, 2n)

T 4n+1
1 h4n+1,0 = 24n+1(−1)n3(2n + 1, 2n)

T 4n+2
1 h4n+2,0 = 24n+2(−1)n3(2n + 2, 2n)

T 4n+1
1 T2h4n+1,1 = 24n+2(−1)n3(2n + 1, 2n + 1)

T 4n+3
1 h4n+3,0 = 24n+3(−1)n+13(2n + 2, 2n + 1)

T 4n+3
1 T2h4n+3,1 = 24n+4(−1)n3(2n + 3, 2n + 1).

We turn to the problem of the evaluations at(1,−1, 0, . . . ,0). In each case, the value will be
expressed in terms of a balanced4F3 series which is obviously positive. This is the result of
applying the Whipple transformation:

4F3

(−n, a, b, c
d, e, f

; 1
)
= (1 +a − e − n)n(1 +a − f − n)n

(e)n(f )n

×4F3

( −n, a, d − b, d − c
d, 1 +a − e − n, 1 +a − f − n ; 1

)
provided−n+a+b+c+1= d+e+f (balanced), andn ∈ Z+. Settingx = x0 = (1,

√−1, 0, . . .)
in the basis polynomials produces the desired values.

Lemma 1. For 06 j 6 n, φ2n,2j+1(x0) = 0, φ2n+1,2j+1(x0) = 0 and

φ2n,2j (x0) = (2k + 1)n+j (−1)n(−n)j (2k + 2n + 1)

n!j !(k + 3
2)j (2k + 1)

φ2n+1,2j (x0) = 2(2k + 2)n+j (−1)n(−n)j
n!j !(k + 3

2)j
.
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Proof. Substitutingx = x0 in the generating functions yields
∑∞

n=0

∑n
j=0 φn,j (x0) =

(1 + 2t − t2)((1 + t2)2 − 4s2t2)−(k+1). The latter term expands to
∞∑

i,j=0

s2j t2i+2j (−1)i
22j (k + 1)j (2k + 2 + 2j)i

j !i!
.

Now multiply top and bottom by(2k + 2)2j , replacei + j by n, (also a simple calculation
to multiply the resulting series by(1 − t2)), and in the denominator expand(2k + 2)2j =
22j (k + 1)j (k + 3

2)j . �

To illustrate the intermediate steps, consider the case

h4n,0(x0) = (−1)n
(2k + 1)n(2k + 2n + 1)

n!(2k + 1)
4F3

(−n, k2 + (N − 1)k + 2n, 1
2, 2k + n + 1

k + 3
2, k2 + n,Nk + n + 1

; 1
)

and transform the series, usinga = k2 + (N − 1)k + 2n andd = k + 3
2. The other cases are

done similarly (the caseh4n+3,0 incorporates one additional step, see section 4.3.4 above). The
results are:

h4n,0(x0) = (−1)n
(2k + 1)n(2k + 2n + 1)((N − 1)k + 1)n(k2 − k)n

n!(2k + 1)(k2 + n)n(Nk + n + 1)n

×4F3

(−n, k2 + (N − 1)k + 2n, k + 1,−n− k + 1
2

k + 3
2, k2 − k, (N − 1)k + 1

; 1
)

h4n+2,0(x0) = (−1)n
2(2k + 2)n((N − 1)k + 1)n(k2 − k)n

n!(k2 + n + 1)n(Nk + n + 2)n

×4F3

(−n, k2 + (N − 1)k + 2n + 1, k + 1,−n− k − 1
2

k + 3
2, k2 − k, (N − 1)k + 1

; 1
)

h4n+1,0(x0) = (−1)n
(2k + 1)n(2k + 2n + 1)((N − 1)k + 1)n(k2 − k + 1)n

n!(2k + 1)(k2 + n + 1)n(Nk + n + 1)n

×4F3

(−n, k2 + (N − 1)k + 2n + 1, k + 1,−n− k + 1
2

k + 3
2, k2 − k + 1, (N − 1)k + 1

; 1
)

h4n+3,0(x0) = (−1)n+1 (2k2 + 2n + 1)(2k + 2)n((N − 1)k + 1)n(k2 − k + 1)n
n!(k2 + n + 1)n+1(Nk + n + 2)n

×4F3

(−n, k2 + (N − 1)k + 2n + 2, k + 1,−n− k − 1
2

k + 3
2, k2 − k + 1, (N − 1)k + 1

; 1
)
.

The values of the even parts ofh4n+1,1(x0) andh4n+3,1(x0) are obtained by replacingk2 by
k2 + 1 in h4n+0,0(x0) andh4n+2,0(x0), respectively (‘even part’ refers tof0 in the expressions
h2m+1,1(x) = x1x2f0(x

2
1, x

2
2, . . .)). This completes the calculation of theL2 norms of the

harmonic polynomials. The4F3 series allow no further simplification.

5. Discussion

To conclude, we discuss the significance of the results, especially with regard to applications
and indications for further research. The problem that was solved here is, in a sense, the minimal
approach to constructing harmonic polynomials of typeB. It may turn out that a different
normalization may be more useful or concise; for example, the valueh4n,0(1, 0, . . .) can be
written as(−1)n(k+1)n3(2n,2n)

n!3(4n,0) and similar expressions hold for the other formulae in section 4.3.

The expression for‖h4n,0‖2 is also somewhat simplified by changing the normalization to
3(4n,0)
3(2n,2n)h4n,0. Of course the4F3 part stays.
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5.1. Application

There is a quantum many-body exactly-solvable model associated with1B , namely the spin
Calogero model of Yamamoto and Tsuchiya [10,11]. This deals withN identical particles on
a line with inverse-square mutual repulsion potential and an external harmonic confinement
potential. In addition, the particles have a two-valued spin which can be exchanged between
them. The construction of eigenfunctions in terms of nonsymmetric Jack and generalized
Hermite polynomials was discussed in [7]. The Hamiltonian for the system (withω, k, k1 > 0)
is

H =
N∑
i=1

{
−
(
∂

∂xi

)2

+ ω2x2
i +

k1(k1− σi)
x2
i

}
+ 2k

∑
16i<j6N

{
k − σij
(xi − xj )2 +

k − τij
(xi + xj )2

}
.

The ground state for the system is

ψ(x) =
N∏
i=1

|xi |k1
∏

16i<j6N
|x2
i − x2

j |k exp

(
−ω|x|

2

2

)
.

Then the conjugateψHψ−1 = 2ω(
∑N

i=1 xi
∂
∂xi

+ Nk2) − 1B . Let fm(x) be a
harmonic and homogeneous polynomial of degreem, then forn = 0, 1, 2, . . . the function
L(c)n (ω|x|2)fm(x)ψ(x) is an eigenfunction ofH with eigenvalue 2ω(m + 2n + Nk2), where
c = m +Nk2 − 1. Here

L(c)n (t) =
(c + 1)n
n!

n∑
i=0

(−n)i
(c + 1)i

t i

i!

denotes the Laguerre polynomial of indexc and degreen. The set of all such functions
with m + 2n = s spans all the eigenfunctions with eigenvalue 2ω(s + Nk2). The set
{L(c)n (ω|x|2)fm(x)} was used as a basis for polynomials in the study of inner products [3]
and the Hankel transform [4]. Van Diejen [1] consideredWN -invariant eigenfunctions of this
type forH. The polynomialsh2n,0 can produce such invariants by summing over translates:(

1 +
∑
j>2

σ2j +
∑

2<i<j6N
σ1iσ2j

)
h2n,0(x).

5.2. Further work

It is still an open problem to find an orthogonal basis for the harmonic homogeneous
polynomials. Such bases are useful in approximation theory and numerical cubature (see
Xu [8,9]). It is not difficult to write down self-adjoint operators on polynomials, for example
(xiTj − xjTi)2 for 1 6 i < j 6 N . This is a useful method for Abelian reflection groups.
However, computer algebra calculations reveal that the characteristic polynomials of these
operators on polynomials of not large degree do not factor linearly inQ(k, k1) (for typeB).
Hence, one does not expect tractable eigenfunction decompositions. It seems worthwhile to
try to extend to more variables the generating function construction forF0, F1 which was the
main device for this paper (that is, consider harmonic polynomials annihilated byTi for i > n0;
already the casen0 = 3 is interesting). Obviously, a more sophisticated way of handling the
different cases will need to be developed. The present approach is just tolerable for the different
basis functions involved in the representation theory ofB2. It certainly seems that finding
orthogonal bases is considerably more complicated then the construction of nonsymmetric
Jack polynomials.
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